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Abstract 23 

Due to their cartilaginous endoskeleton and the continuous tooth replacement, the 24 

chondrichthyan fossil record predominantly consists of isolated teeth, which offer diagnostic 25 

features for taxonomic identifications, but only provide very limited information of an 26 

organism’s life history. In contrast, the calcified vertebral centra of elasmobranchs (sharks, 27 

skates and rays) yield important information about ecological and biological traits that can be 28 

utilized for constructing age-structured population dynamic models of extant species and 29 

palaeoecological reconstructions of such aspects in extinct groups. Here, we describe two large 30 

shark vertebrae from the Santonian (Upper Cretaceous) of Spain, which show a unique 31 

combination of characters (asterospondylic calcification pattern, with concentric lamellae and 32 

numerous parallel bands that are oriented perpendicular) that is only known from ptychodontid 33 

sharks, a distinct, extinct group of giant durophagous sharks of the Cretaceous era. Based on 34 

linear regression models for large galeomorph sharks a total length between 430 and 707cm was 35 

estimated for the examined specimen. Our results indicate that ptychodontid sharks were large 36 

viviparous animals, with slow growth rates, matured very late and, therefore, show typical traits 37 

for K-selected species. These traits combined with a highly specialized feeding ecology might 38 

have played a crucial role for this group’s success but also, eventually, extinction.  39 

 40 
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Introduction 41 

More than 400 million years of evolution have shaped a diverse set of biological traits in modern 42 

elasmobranchs (sharks, skates and rays) that allowed them to occupy a variety of different niches 43 

and trophic levels. They have conquered marine and freshwater environments around the world, 44 

reaching body sizes from 0.2m (dwarf lantern shark Etmopterus perryi) to 20m (whale shark 45 

Rhincodon typus), and have developed a number of different reproduction strategies that can be 46 

roughly categorized in oviparity (egg laying), and viviparity (giving birth to live pups) [1,2]. 47 

Three general life history patterns can be found in sharks: 1) small body size, low longevity, 48 

small litters, small offspring, fast growth; 2) large body size, moderate to high longevity, large 49 

litters, small offspring, small growth; 3) large body size, high longevity, small litters, large 50 

offspring, slow growth [3]. 51 

The application of life history traits has proven potentially useful in fisheries to determine 52 

if stocks are endangered and to estimate their chances to recover [4,5]. Additionally, life history 53 

traits of extinct taxa are vital for palaeoecological reconstructions and can give important 54 

insights into a species’ demise, perseverance, and are crucial to augment our understanding of 55 

diversity and extinction patterns [6-8]. However, the fossil record of chondrichthyans 56 

predominantly consists of isolated teeth, which only offer limited information about a species’ 57 

biological traits. Vertebrae on the other hand yield important data on the biology and ecology of 58 

fossil elasmobranchs, but only have been described for a very limited number of extinct species 59 

[9-14]. 60 

Ptychodontid sharks seemingly were giant durophagous fish that lived in the Cretaceous 61 

period from the Aptian (~113-125mya) to the Campanian (~72-83mya) [15] and are believed to 62 

have obtained body sizes of more than ten meters [16,17]. Although fossils of this group are 63 
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common in Cretaceous deposits and are known from around the globe, the taxonomic placement 64 

of this group remains ambiguous and they have been discussed to be either batomorphs [18], 65 

hybodont sharks [16], or put in the new order Ptychodontiformes within the Neoselachii (sensu 66 

Compagno [19]; Elasmobranchii sensu Maisey [20]) [21]. However, the presence of calcified 67 

vertebrae [22] and a three-layered enameloid [23] support the affinity of this group to modern 68 

sharks. 69 

Here we describe the first articulated shark remains from the Santonian of Spain, Europe. 70 

Although no teeth were found associated with the vertebrae, taxonomic placement was possible 71 

due to a unique combination of characters that is only known for ptychodontids and allowed the 72 

exclusion of any other shark taxon known from this period. Furthermore, the vertebrae yield 73 

important information about the ontogeny, growth and body size and, therefore, provide insights 74 

into the life history of this enigmatic shark group.  75 

 76 

Material and methods 77 

Geographic and geological setting 78 

The material that forms the focus of this study comprises a portion of an axial skeleton consisting 79 

of five articulated and several disarticulated vertebral centra belonging to the same individual, 80 

which were collected 10 km west of Santander in northern Spain, from a section on the coast 81 

near the village of Soto de la Marina (Fig 1). Here, sediments ranging from the Cenomanian to 82 

Maastrichtian accumulating to 1200 m in thickness are well exposed. The investigated section 83 

starts with light greyish to whitish, massive and arenitic limestone beds forming the lower unit 84 

reaching a thickness of 24.7m. This lower unit ranges from the late Campanian to early 85 

Santonian in age and is characterized by the occurrence of the holasteroid, Cardiaster integer 86 

Evidenziato
The paper has clearly a paleobiological approach, but these characters has never been clearly evidenced in previous papers. This should be better remarked, maybe emending the diagnosis of the genus adding the characters evidenced in the analysis. For dental characters of the genus please refer to and complete the diagnosis by Hamm 2020. New Mexico Museum of Natural History and Science Bulletin 81.
 

Nota
I would recommend the insertion of an image to better illustrate the stratigraphic framework of the section and the location of the specimen
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(‘integer limestones’), which is a well-known species from the calcareous platforms of the 87 

Basque-Cantabrian Region, northern and southern Pyrenees, and Alpes-Maritimes [24]. 88 

Within the ‘integer limestones’, two layers characterized by abundant occurrences of the 89 

inoceramid, Platyoceramus (Cladoceramus) undulatoplicatus were identified during fieldwork 90 

for a diploma thesis by K. Oppermann (Berlin, Germany) in 1997 [25] and designated as 91 

undulatoplicatus events I and II. The first appearance of Platyceramus undulatoplicatus marks 92 

the base of the Santonian stage according to the Santonian Working Group report to the second 93 

Symposium on Cretaceous Stage Boundaries [26]. The vertebrae, which were recovered from a 94 

ca. 1.2 x 0.5m large, concretionary limestone lens coming from the upper, 2nd undulatoplicatus 95 

Event, consequently are of earliest Santonian age. 96 

 97 

 98 

Fig 1. Fossil locality near Santander, northern Spain where EMRG-Chond-SK-1 was 99 

recovered (indicated by a black star). 100 

 101 

Documentation and preparation 102 

The articulated vertebral section was photographically documented in the field but not collected 103 

(Fig 2). Small sediment samples adjacent to the incomplete vertebral column were taken for 104 

screen-washing and two disarticulated vertebral centra of varying preservational degree, which 105 

are housed in the fossil vertebrate collection of the Department of Palaeontology (University of 106 

Vienna) under the number EMRG-Chond-SK-1. Of one vertebral centrum, a dorso-ventrally 107 

directed thin section was prepared. The sediment samples and carbonate matrix of the other 108 

specimens were removed with 10% acetic acid and the residues sieved with a 0.25 mm mesh and 109 

Nota
Please provide also more recent references. For example, 
Lamolda, M. A., Paul, C. R. C., Peryt, D., & Pons, J. M. (2014). The global boundary stratotype and section point (GSSP) for the base of the Santonian Stage," Cantera de Margas", Olazagutia, northern Spain. Episodes, 37(1), 2-13.
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sorted under a binocular. The recovered material comprises some dermal scales of the 110 

elasmobranch placoid type, which are deposited in the fossil collection of the Institute of 111 

Palaeontology, Free University Berlin without numbers. Some of these placoid scales were 112 

studied with a Jeol high-vacuum scanning electron microscope at the Institute of Geological 113 

Sciences of the Free University Berlin, Germany (S1 Fig). 114 

 115 

 116 

Fig 2. Additional articulated (A, B) and disarticulated shark vertebrae (C,D) found in situ 117 

associated with EMRG-Chond-SK-1. Picture courtesy of K. Oppermann, 1997. 118 

 119 

 120 

Size estimation  121 

Previous studies showed a linear relationship between total length (TL) and vertebral centrum 122 

diameter (CD) in several shark species [27-31] that can be expressed with a regression equation 123 

[10,32]. Due to the fragmentary nature of the material, we measured the radius and multiplied it 124 

by two to obtain the diameter of the centrum. The larger vertebra EMRG-Chond-1b had a 125 

sedimentary infill between increment rings 25 and 26. Taking this into account, the radius was 126 

measured to the 25th increment ring and the distance between the 26th and outermost increment 127 

ring (31) was added. The distance between band pair 25 and 26 was estimated as the average 128 

value of the band intervals of the five preceding and five succeeding increment rings. As it was 129 

impossible to determine the position of the two isolated vertebrae, we conservatively regarded 130 

the vertebra with the higher centrum diameter as the largest vertebra in the entire individual. This 131 
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approach ensured a minimum estimate for the total length and reduced the risk of overestimating 132 

the body size. 133 

Most pelagic sharks have a consistent body form [10,33], therefore, it was regarded as 134 

reasonable in previous studies to assume that the relationship between vertebral size and total 135 

body length is consistent between species with similar ecologies. However, it has been reported 136 

that this relationship can vary between species [9,10,12]. To overcome this issue we conducted 137 

two independent approaches to estimate the total length of the examined specimen: 138 

(1) We extrapolated the total length of EMRG-Chond-SK-1b by comparing it with the 139 

estimated total length (TL) and centrum diameter (CD) of †Ptychodus occidentalis [16].  140 

1
†  

†  

( )
EMRG Chond SK b

Ptychodus occidentalis

Ptychodus occidentalis

CD
TLx cm TL

CD

  
    141 

(2) We used published regression equations for large galeomorph sharks to estimate the 142 

relationship between centrum diameter (CD; mm) and total length (TL; cm). The following 143 

species with known regression equations were used as templates: (1) the great white shark 144 

Carcharodon carcharias [32]; (2) tiger shark Galeocerdo cuvier [34]; (3) whale shark 145 

Rhincodon typus [31].  146 

 22 5.8Carcharodon carchariasTL CD    147 

 35.293 14.314Galeocerdo cuvierTL CD    148 

 36.695 9.531Rhincodon typusTL CD    149 

 150 

Results and Discussion 151 

Systematic Palaeontology 152 

Class CHONDRICHTHYES Huxley, 1880 [35] 153 
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Subclass ELASMOBRANCHII Bonaparte, 1838 [36] 154 

Order incertae sedis 155 

Family PTYCHODONTIDAE Jaekel, 1898 [18]  156 

Genus PTYCHODUS Agassiz, 1835 [37] 157 

Material. EMRG-Chond-SK-1; two vertebral centra. 158 

Locality. Soto de la Marina, west of Santander, Cantabria, N Spain. 159 

Age and horizon. Early Santonian, ‘integer limestone’, undulatoplicatus Events II. 160 

 161 

Description. Both centra were found articulated with several other vertebrae, which were not 162 

recovered and left in the field (Fig 2). Vertebra centra show a marked concavity on the articular 163 

surfaces (amphicoelous) and appear nearly circular in median transverse view. The dimensions 164 

are approximately 55mm (EMRG-Chond-SK-1a) and 70mm (EMRG-Chond-SK-1b) in diameter 165 

(dorsoventrally) and the vertebral anterior-posterior length is 23mm (EMRG-Chond-SK-1a). Due 166 

to the fragmentary condition of the material, no dimensions could be measured for the 167 

mediolateral diameter. 168 

Anterior and posterior facets of the vertebral centra show concentric calcareous rings 169 

extending outwards from the center of the vertebrae. Numerous parallel lamellae are oriented 170 

perpendicular to these concentric lamellae (Fig 3A). EMRG-Chond-SK-1b was sectioned 171 

transversely and exhibits an asterospondylic calcification pattern (Fig 3B): secondary 172 

calcification leaves four uncalcified areas (i.e. two basidorsal and two ventral cartilage wedges), 173 

which radiate diagonally from the center to the base of the neural and haemal arches. Concentric 174 

lamellae are restricted to the intermedialia (the area between the wedges). A total of 31 growth 175 

increments can be identified in the vertebra section. Postmortem sedimentary infilling can be 176 

Evidenziato
the area between the wedges, sensu Ridewood (1921)

Evidenziato
It would be useful a brief introduction to the general structure of the shark centrum (corpus calcareum, intermedialia, etc.) (see e.g., Newbrey et al., 2015: p. 879)

Nota
Does the outer pattern of the corpus calcareum reflect the inner calcification pattern of the intermedialia? Apparently yes. Please take in consideration to better describe the external aspect for taxonomic comparison (Is it smooth or has some other pecularities? In lamniform sharks the external aspect is considered diagnostic for some species, e.g., the presence of papillose circular ridges on the surface of the corpus calcareum in Cardabiodon ricki)
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observed between ring 25 and 26 which inflated the distance between those two rings (Fig 3B). 177 

The dorsoventral and mediolateral radii of the first increment ring (birth ring) are 3.6 and 3.2mm, 178 

respectively. 179 

 180 

 181 

Fig 3. Morphology and calcification pattern of the vertebral centra of EMRG-Chond-SK-1. 182 

(A) close up view and illustration of the outer morphology of EMRG-Chond-SK-1a; (B) 183 

vertebral section in transverse plane and illustration of EMRG-Chond-SK-1b. 184 

 185 

 186 

Taxonomic remarks 187 

In contrast to teeth, vertebral centra are thought to bear only little taxonomic information for 188 

extinct elasmobranch fishes as comparative analyses are hard to perform due to the lack of 189 

articulated material with associated teeth. Hasse [38] recognized three different calcification 190 

patterns of vertebrae in cross-section (cyclospondyl, tectospondyl, and asterospondyl), which 191 

later was revised by Ridewood [39], who stated that these three categories were not sufficient to 192 

describe the plethora of different calcification patterns that can be found in sharks, skates and 193 

rays. The vertebral centrum EMRG-Chond-SK-1b displays the asterospondylic type (sensu 194 

Hasse [38]) with four uncalcified areas radiating from the center to the bases of the neural and 195 

haemal arches, which is typical for galeomorph sharks [40]. 196 

Another character that is apparent in the cross section is the presence of concentric 197 

lamellae that are extending outwards from the centra. The combination of these two features 198 

(asterospondyly with uncalcified wedges and concentric lamellae) are only known from the 199 
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basking shark Cetorhinus maximus [39,41], the whale shark Rhincodon typus [28], †Ptychodus 200 

[42,43], and †Squalicorax [43,44]. Both †Ptychodus and †Squalicorax are known from 201 

Cretaceous deposits in Europe, N- and S-America, Africa and Asia [15]. Our specimen shows 202 

numerous parallel bands that are oriented 360° around the center of the vertebrae. These parallel 203 

lamellae are oriented perpendicular to the concentric lamellae, a trait only known from 204 

ptychodontid sharks and is regarded as a diagnostic feature for this group, which is absent in 205 

other sharks, including C. maximus, R. typus, and †Squalicorax [21,45]. This assumption is also 206 

supported by previous reports of ptychodontid shark vertebrae, which display this feature 207 

[22,42,46]. Rozefelds [47] reported large vertebral centra from the lower Cretaceous Toolebuc 208 

Formation of Australia, which resemble our specimens. He found associated placoid scales but 209 

no oral teeth and assigned the species tentatively to the anacoracid genus †Pseudocorax. This, 210 

however, seems very unlikely because †Pseudocorax was a rather small anacoracid shark with 211 

tooth crown heights of 1.5cm [15], which is comparable to the teeth of a two meters long 212 

†Squalicorax falcatus [9]. Furthermore, like in our specimen, parallel lamellae vertebrae are 213 

visible, which is not known from anacoracid sharks. The combination of the above mentioned 214 

characters (parallel lamellae, concentric lamellae, asterospondyl centra), the size of the vertebral 215 

centra and the stratigraphic age (Cretaceous) of these species, leads us to the assumption that 216 

both specimens, EMRG-Chond-SK-1 and Rozefelds’ QMF18264, are ptychodontid sharks. 217 

Other big sharks from the Late Cretaceous are known from the order Lamniformes (e.g., 218 

†Cretalamna, †Cretodus, †Cretoxyrhina), but can easily be ruled out because they are known to 219 

have a different mineralization pattern of the vertebral centra (i.e., the vertebral centrum is 220 

strengthened by multi-branched, densely packed lamellae), have radial lamellae on the 221 

dorsoventral axis in lateral view (which our specimen does not have), and lack parallel lamellae 222 

Barra
However, this

Nota

Evidenziato
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vertebrae [12,13,44,48-51]. The placoid scales from the sediment samples associated with the 223 

Spanish specimen represent three different morphotypes (see Supporting Information S1 Fig). 224 

Placoid scale type 3 of the Spanish specimen resembles those figured by Shimada et al. [16,17] 225 

and the ‘curved crown scale’ type of Rozefelds [47] to some extent. The other two scale types in 226 

the specimen described here have not been figured before. These morphological differences 227 

might be related to different positions of the scales on the body. As no teeth were found 228 

associated with this specimen, an exact taxonomic identification on species level remains 229 

impossible, which leaves us to refer to it as †Ptychodus sp.   230 

 231 

Age, growth and inferred life history traits 232 

Age estimation 233 

Whole vertebral centra, as well as transverse and sagittally sectioned centra have been commonly 234 

used for aging elasmobranchs by counting alternating opaque and translucent band pairs (also 235 

referred to as band pairs, annuli, rings, or vertebral growth increments) that are deposited in the 236 

vertebral centra as they grow [10,21,52-54]. A number of studies suggested that these band pairs 237 

are deposited annually in several elasmobranch species e.g., in the shortfin mako shark Isurus 238 

oxyrinchus [29], scalloped hammerhead shark Sphyrna lewini [55], dusky shark Carcharhinus 239 

obscurus [56], leopard shark Triakis semifasciata [57], smalltooth sawfish Pristis pectinata [58], 240 

etc. [59-66]. However, this is questioned by recent studies [67-69] and especially in old 241 

individuals of long living species the age determination seems to be highly underestimated as the 242 

growth rate decreases with age resulting in a band width decline at the centrum edges that can 243 

become unresolvable in older individuals [52,67,70-74]. The section of EMRG-Chond-SK-1b 244 

revealed 31 band pairs (birth mark + 30 band pairs), suggesting, under the assumption of an 245 

Evidenziato
An image showing the band count would be useful to better illustrate the estimation
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annual growth band deposition, that EMRG-Chond-SK-1 was around 30 years old. These band 246 

pairs were well distinguishable, indicating that EMRG-Chond-SK-1 had not reached the 247 

maximum length when it died, because no compressed arrangement of band pairs is preserved at 248 

the edges. 249 

 250 

Body Size Estimation 251 

Based on the previously published centrum diameter and estimated total length of †Ptychodus 252 

occidentalis [16] we calculated an estimated total length of 8.87-11.83m for EMRG-Chond-SK-253 

1. However, this estimation should be taken with caution, as the TL-CD relationship of †P. 254 

occidentalis is based on a single vertebral centra which not necessarily represents the largest 255 

vertebrae in this specimen and, therefore, bears a great risk to be erroneous and to result in 256 

overestimated size approximations. Therefore, we recommend taking the previously estimated 257 

TL of 13m for †P. rugosus [16], which was also based on this TL-CD relationship, with much 258 

caution.   259 

Further indication of overestimated body sizes for †Ptychodus is given by our 260 

calculations of the total length of EMRG-Chond-SK-1 based on regression equations for large 261 

galeomorph sharks. In contrast to the above-mentioned extrapolation, this approach has the 262 

advantage, by assuming EMRG-Chond-SK-1b to be the largest vertebrae, to offer minimum size 263 

estimations and, therefore, reducing the risk of overestimating the size. Using the vertebral 264 

diameter of 70 mm and the regression equations for the great white shark Carcharodon 265 

carcharias [32], tiger shark Galeocerdo cuvier [34] and whale shark Rhincodon typus [31], the 266 

minimum total length of EMRG-Chond-SK-1 is calculated to be 4.30m, 5.39m, and 7.07m 267 

respectively. The use of regression equations for three different species (from three different 268 

orders) has shown significant variations in estimated body sizes and, thus, indicates that previous 269 

Barra
would

Nota

Evidenziato
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assumptions of the more or less consistent body forms in pelagic sharks resulting in similar size 270 

estimations [33] were oversimplified. In fact, a variety of different factors (e.g., phylogenetic 271 

affiliations, lifestyle, trophic level, etc.) might contribute to the relationship between vertebral 272 

diameter and total body length and, therefore, affect size estimations. However, it seems 273 

reasonable to assume that the total length of EMRG-Chond-SK-1 lies within the estimated range 274 

of 4.3-7.07m as the three template species of the regression equations cover a wide range of 275 

different ecologies (microphagous and macrophagous sharks) and are not closely related to each 276 

other (diversification of these three groups occurred in the Early and Middle Jurassic, 277 

respectively [8]). Given that our specimen most likely has not yet reached maturity and therefore 278 

represents a subadult, previous size estimations of around 10m [17] seem possible for this group. 279 

Although more accurate maximum size estimations need to wait until a complete specimen can 280 

be analyzed, our study agrees with previous work that †Ptychodus was one of the largest 281 

durophagous vertebrates in Earth’s history.   282 

 283 

Growth Rate 284 

The intervals between adjacent band pairs remain more or less stable from the innermost band 285 

pair to the outermost band pair, although some variability does exist (Table 1). This differs from 286 

previous studies [10-13], which reported the intervals to decrease from the innermost to the 287 

outermost band pairs and indicates that the growth rate of EMRG-Chond-SK1 has not decreased 288 

until its death (Fig 4A). Attempts to fit the data to a von Bertalanffy growth model resulted in 289 

erroneous maximum size estimations (TLmax>20m). Plotting the CR of each growth ring against 290 

the growth ring count (“age”) resulted in a graph that followed a linear model which, because of 291 

the linearity between CR/CD and TL, follows the same trend if TL is plotted against growth ring 292 

Evidenziato
an image illustrating upper and lower limit with a scale reference could potentially improve the visual effect of the paragraph (e.g., see Marramà et al., 2017: fig.5) doi.org/10.1080/08912963.2017.1341503 
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count (or “age”) (Fig 4B). Most growth models for fish are nonlinear [75] and shark growth 293 

models are usually best described by an asymptotic growth model (e.g., von Bertalanffy growth 294 

model) [54]. To date, all examined sharks and rays show asymptotic growth during ontogeny and 295 

it therefore seems justified to assume that †Ptychodus did so as well. Our data suggest that 296 

EMRG-Chond-SK1 has not reached the plateau of the asymptote of the growth curve yet and, 297 

consequently, not its maximum length. Furthermore, clear inflections of the growth curve, that 298 

indicate a decreased growth rate (e.g., after reaching maturity when energy from somatic growth 299 

is diverted to gonadal growth), are absent in EMRG-Chond-SK1 and, thus, suggests that it has 300 

not reached maturity at band pair 25 with an estimated body size between 369 and 607cm. These 301 

estimations are reasonable when compared to modern giant sharks (“gigantism” sensu Pimiento 302 

et al. [76] refers to sharks with body sizes exceeding six meters), which show similar sizes at 303 

maturity, e.g., the great white shark, Carcharodon carcharias, at 350-500cm (TL about 600cm), 304 

basking shark, Cetorhinus maximus, at 400-800cm (TL more than 1000cm), whale shark, 305 

Rhincodon typus, at 600-800cm (TL 1700-2100cm) [2]. When compared to big macropredatory 306 

sharks (i.e., great white shark Carcharodon carcharias and Cretoxyrhina mantelli), it is apparent 307 

that the slope of the growth curve of †Ptychodus is less steep and more similar to the 308 

microphagous basking shark Cetorhinus maximus (Fig 4C). Therefore, the growth rate of 309 

†Ptychodus is assumed to be lower than those of apex predatory sharks. Under the assumption of 310 

an annual growth band deposition, †Ptychodus matured very late (after more than 25 years) and 311 

showed great longevity, similar to today's giant filter-feeding sharks [31,77].  312 

 313 

Table 1. Measurements and derived estimations taken from vertebra EMRG-Chond-SK-314 

1b. 315 

Evidenziato
the data set from specimen EMRG-Chond_SK1
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BN CR (mm) BI (mm) pCD (%) TLCC (cm) TLGC (cm) TLRT (cm) 

1 3.7 - 10.51% 64.92 88.25 107.23 

2 4.4 0.7 12.50% 73.04 98.28 120.57 

3 5.3 0.9 15.06% 83.48 111.16 137.72 

4 6.1 0.8 17.33% 92.76 122.61 152.97 

5 6.9 0.8 19.60% 102.04 134.06 168.22 

6 8.1 1.2 23.01% 115.96 151.24 191.10 

7 9.5 1.4 26.99% 132.20 171.28 217.79 

8 10.5 1 29.83% 143.80 185.59 236.85 

9 12 1.5 34.09% 161.20 207.06 265.44 

10 12.9 0.9 36.65% 171.64 219.94 282.60 

11 14.2 1.3 40.34% 186.72 238.55 307.38 

12 15.6 1.4 44.32% 202.96 258.59 334.06 

13 16.8 1.2 47.73% 216.88 275.77 356.94 

14 18 1.2 51.14% 230.8 292.95 379.81 

15 19.3 1.3 54.83% 245.88 311.55 404.59 

16 20.4 1.1 57.95% 258.64 327.30 425.56 

17 21.4 1 60.80% 270.24 341.61 444.62 

18 22.5 1.1 63.92% 283.00 357.36 465.59 

19 24.1 1.6 68.47% 301.56 380.26 496.09 

20 25.3 1.2 71.88% 315.48 397.44 518.97 

21 26.4 1.1 75.00% 328.24 413.18 539.94 

22 27.2 0.8 77.27% 337.52 424.63 555.19 

23 28.1 0.9 79.83% 347.96 437.52 572.34 

24 29 0.9 82.39% 358.40 450.40 589.50 

25 29.9 0.9 84.94% 368.84 463.28 606.65 

26 N/A N/A N/A N/A N/A N/A 

27 N/A 0.8 N/A N/A N/A N/A 

28 N/A 0.7 N/A N/A N/A N/A 

29 N/A 1.1 N/A N/A N/A N/A 

30 N/A 1.1 N/A N/A N/A N/A 

31 *35.2 0.8 100.00% 430.32 539.15 707.68 

Abbreviations: BN, band number; CR, centrum radius; BI, band interval; pCD, percent centrum diameter from the 316 
center of the vertebra TLCC, total length estimation based on the regression equation of Carcharodon carcharias [32]; 317 
TLGC, total length estimation based on the regression equation of Galeocerdo cuvier [34]; TLRT,total length estimation 318 
based on the regression equation of Rhincodon typus [31]. 319 
*reconstructed value; see “Materials and methods” for more details on its computation. 320 
 321 

 322 

Fig 4. Growth ring profile of EMRG-Chond-SK-1b: (A) centrum size profiles of EMRG-Chond-SK-323 

1b follow the same trend for radii in dorsal, ventral and mediolateral direction. (B) data points of the 324 

centrum size profile closely follow a linear function. (C) growth ring distances of EMRG-Chond-SK-1b 325 

compared to †Cretoxyrhina mantelli [10] and Cetorhinus maximus [77]. 326 

 327 
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 328 

Inferred life history 329 

Vertebral centra of sharks have proven useful for estimating body sizes [13,33], growth rates 330 

[10-13,29,30,64] and, therefore, allow the reconstruction of biological and ecological traits, as 331 

various of these aspects of an organism are correlated with body size [78-81]. Although we could 332 

not determine the identity of EMRG-Chond-SK-1 on species level, it gives us valuable insights 333 

into the ontogeny and ecology of ptychodontid sharks. Our analysis on the vertebral growth 334 

indicates that †Ptychodus was slow growing, late maturing and seemingly long-living, all of 335 

which are key traits for a K-selected species. Based on the radius of the birth ring (0.37cm) we 336 

estimated a total length of 0.65-1.07m for our specimen at the time of birth. Offspring with 337 

similar sizes are known from a variety of large viviparous sharks, e.g. great hammerhead shark 338 

Sphyrna mokarran (50-70cm), tiger shark Galeocerdo cuvier (51-76cm), great white shark 339 

Carcharodon carcharias (110-160cm), basking shark Cetorhinus maximus (150-170cm), and 340 

whale shark Rhincodon typus (55-64cm) [2]. Similar sizes at birth have not been reported for 341 

oviparous sharks (usually not exceeding 15-25cm), which leads us to the assumption that 342 

†Ptychodus also was a viviparous shark that put a lot of resources into the development of large 343 

offspring.  344 

To date, we can only speculate about the reasons for the extinction of this group. 345 

However, K-selected life history strategies represent specific adaptations (slow growing, late 346 

maturity, large body, small size of litter) that make such sharks more prone to changing 347 

environments and have been correlated with increased extinction risk compared to oviparous (r-348 

selected) sharks [82]. We unambiguously demonstrate here that extinct ptychodontid sharks had 349 

Evidenziato
PlosOne does not request a mandatory conclusion paragraph, but please consider making a paragraph remarking the most important points of this study. The title is "First articulated skeletal remains" but there is no reference to other findigs of Ptychodus in Spain and comparison with their kind of preservation (isolated teeth? isolated vertebral centra?). And the fact that these are the first articulated skeletal remains should be better remarked in the discussion or in the conclusions (there is a reference to this only in the title and in the introduction).
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K-selected traits, which in combination with a highly specialized trophic niche (durophagy) 350 

might have been a major intrinsic contributor to this group’s demise.  351 
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Supporting Information 590 

S1 Fig. Placoid scales found associated with vertebrae of EMRG-Chond-SK-1. (A) type 1, “six-591 

keeled scales”; (B) type 2, “three-keeled scales”; (C) type 3, “knob-like scales”. 592 
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